
Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 42 of 50

Appendix B EUnit – test harness for Excel

B.1 Introduction
EUnit is a test harness to implement unit testing for Excel. EUnit is specific to Excel
and is implemented as part of Excel, so it cannot be used with other spreadsheet
packages. Therefore, unlike the rest of this guide, this appendix is only applicable to
Excel and not to other spreadsheet packages.

A test harness is a piece of software that allows a selection of tests to be run, and the
results recorded, without further interaction with the tester. Unit testing is a method of
testing where each code unit (module, function, etc.) is tested, rather than testing the
software as a whole. EUnit is design for unit testing of Excel applications, but can also
used for system testing.

The implementation of unit testing in EUnit follows that of JUnit, for testing Java [10],
including the choice of names for the testing procedures. JUnit uses Java exception
handling to handle errors in tests, but it was not possible to mimic this in EUnit: instead
global variables are used to record execution failures in tests.

Tests are written as procedures that ultimately call “assert” procedures that are used to
indicate whether the tests pass or fail. The test procedures reside in code modules,
which can also contain set-up and tear-down procedures that are run before and after
each test in the module. Having written the tests, they are run using the EUnit GUI.
The GUI allows you to select the tests, run the tests and display the results. The
following sections describe how to write the tests and how to run them.

A beta release of EUnit is available from:
http://www.npl.co.uk/ssfm/download/documents/software/eunit/eunit-beta-1.3.zip

B.2 Writing the tests
The test procedures reside in code modules, these code module can contain other code
and the test procedures are distinguished by having a name beginning with “test”
(case does not matter). The code modules containing test can also include special
procedures, “setUp” and “tearDown”, to be run before and after each test in the
module. The modules can contain other functions and procedures, perhaps to be used to
support the test procedures, as long as their names do not match the test procedures.

DEM-ES 013 Development and Testing of Spreadsheet Applications

 43 of 50

B.2.1 Test procedures
All test procedures should have the following structure:

Public Sub testNameOfTest()
 On Error GoTo traperrors
 ' The test code goes here
 Exit Sub
traperrors:
 Call fail("Failed executing the test", _
 Err.Description, _
 Err.Source, _
 Err.Number)
End Sub

The trapping of errors within a test is vital; otherwise the test harness (as a whole) could
fail.

This is a simple example test procedure

Public Sub testMultiply()
 On Error GoTo traperrors
 Range("A1").Value = 2
 Range("B1").Value = 3
 Range("C1").Formula = "=A1*B1"
 Call assertEquals(Range("C1").Value, _
 6, , "Multiply two numbers")
 Exit Sub
traperrors:
 Call fail("Failed executing the test", _
 Err.Description, _
 Err.Source, _
 Err.Number)
End Sub

Only test procedures, starting with “test”, will be executed as tests by the harness, all
other procedures will not be executed (unless called by a test).

B.2.2 setUP and tearDown
Two other procedures can be part of a test module setUP and tearDown; these are
executed respectively before and after each test in a module is executed. Their structure
is similar to the test procedures and is shown below:

Public Sub setUP()
 On Error GoTo traperrors
 ' initialisation code goes here
 Exit Sub
traperrors:
 Call fail("Failed set up", _
 Err.Description, _
 Err.Source, _
 Err.Number)
End Sub

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 44 of 50

Public Sub tearDown()
 On Error GoTo traperrors
 ' termination code goes here
 Exit Sub
traperrors:
 Call fail("Failed tear down", _
 Err.Description, _
 Err.Source, _
 Err.Number)
End Sub

Here is an example of the use of setUP and tearDown to save and restore cells from
the worksheet that are overwritten by the test (for example, testMuliply defined
above).

Option Explicit
Dim a, b, c

Public Sub setUP()
 On Error GoTo traperrors
 a = Range("A1")
 b = Range("B1")
 c = Range("C1")
 Range("A1:C1").ClearContents
 Exit Sub
traperrors:
 Call fail("Failed set up", _
 Err.Description, _
 Err.Source, _
 Err.Number)
End Sub

Public Sub tearDown()
 On Error GoTo traperrors
 Range("A1:C1").ClearContents
 Range("A1") = a
 Range("B1") = b
 Range("C1") = c
 Exit Sub
traperrors:
 Call fail("Failed tear down", _
 Err.Description, _
 Err.Source, _
 Err.Number)
End Sub

B.2.3 Test results
Each test must have one (or more) of the several “assert methods” that assign the test
result; these are described in the next sections. If a test has failed, this is recorded as the
final result of that test, although the test may continue to execute (and if in an infinite
loop will remain in it!).

DEM-ES 013 Development and Testing of Spreadsheet Applications

 45 of 50

A test can result in one of four results, which are explained in the table below:

Possible test result Meaning
Pass The test has passed.
Fail The test has failed at some assert method.
Abort No assertions have been made in the test.
Error This should not occur – error in EUnit.

Table 4: Test results for EUnit tests

B.2.4 assertTrue
Test based on a Boolean expression.

Name assertTrue

Exp Boolean M Boolean expression which if true the
assertion is then true

TestDescription String O Description of the test
Description String O Usually Err.Decription
Source String O Usually Err.Source Pa

ra
m

et
er

s

Number Long O Usually Err.Number
Examples:
Call assertTrue(True, _
 "Captured a deliberate error in the test", _
 Err.Description, _
 Err.Source, _
 Err.Number)
Call assertTrue(Result, "setUP test 1")

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 46 of 50

B.2.5 assertEquals
Test if two values are equal.

Name assertEquals

Expected Variant M Expected result – Can be Double, Single,
Integer, Long, Byte, Decimal or String

Actual Variant M Actual result – Can be Double, Single,
Integer, Long, Byte, Decimal or String

Delta Double O Used when comparing Double or Single,
has a default value of
4.94065645841247E-324

Pa
ra

m
et

er
s

TestDescription String O Description of the test
Examples:
Call assertEquals(XY, _
 Worksheets("testSheet1").Range("XY"), _
 , _
 "Test 1: integer")
Call assertEquals(5.75, _
 Worksheets("testSheet1").Range("XY"), _
 0.001, _
 "Test 2: double/single")
Call assertEquals("Hello World", _
 Worksheets("testSheet1").Range("XYs"), _
 , _
 "Test 4: strings")

B.2.6 fail
This is used when test have failed – it is equivalent to assertTrue(False, …).

Name fail

TestDescription String O Description of the test
Description String O Usually Err.Decription
Source String O Usually Err.Source

Pa
ra

m
et

er
s

Number Long O Usually Err.Number
Examples:
Call fail("Failed executing the test", _
 Err.Description, _
 Err.Source, _
 Err.Number)
Call fail("Fail to capture the error")

DEM-ES 013 Development and Testing of Spreadsheet Applications

 47 of 50

B.3 Running the tests

B.3.1 Installing EUnit
Before the tests can be run, EUnit must be attached to the spreadsheet application as a
reference. The tests can then be executed through the supplied GUI.

From the Microsoft Visual Basic toolbar: Tools → References → Browse → EUnit.xls.

B.3.2 Using the GUI
The GUI is activated by calling the macro EUnit.xls!showallresults,
in the workbook with the tests in it, in which case you should see the following figure.

Figure 3: EUnit panel

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 48 of 50

B.3.3 Running tests
The top part of the GUI contains a list of all the possible code modules in the workbook.
Select those with the tests and click on the yellow button. The results will appear, in the
part of the GUI labelled Results, see below:

Figure 4: EUnit test results

DEM-ES 013 Development and Testing of Spreadsheet Applications

 49 of 50

B.3.4 Displaying details of tests
For any test further details can be obtained by clicking on it:

Figure 5: EUnit test detail

Software Support for Metrology Best Practice Guide No. 7 DEM-ES 013

 50 of 50

References
These are books and articles we found useful and relevant. They cover the application
of software engineering practice to spreadsheet application development and rapid
application development.

1. Cook, H.R., M.G. Cox, M.P. Dainton, and P.M. Harris. A methodology for
testing spreadsheets and other packages used in metrology. Report to the
National Measurement System Policy Unit, Department of Trade and Industry,
from the UK Software Support for Metrology Programme. NPL Report CISE
25/99, NPL, September 1999. http://www.npl.co.uk/ssfm/download/#cise25_99

2. Cook, H.R., M.G. Cox, M.P. Dainton, and P.M. Harris. Testing spreadsheets
and other packages used in metrology: A case study. Report to the National
Measurement System Policy Unit, Department of Trade and Industry, from the
UK Software Support for Metrology Programme. NPL Report CISE 26/99, NPL,
September 1999. http://www.npl.co.uk/ssfm/download/#cise26_99

3. Cook, H.R., M.G. Cox, M.P. Dainton, and P.M. Harris. Testing spreadsheets
and other packages used in metrology: Testing the intrinsic functions of Excel.
Report to the National Measurement System Policy Unit, Department of Trade
and Industry, from the UK Software Support for Metrology Programme. NPL
Report CISE 27/99, NPL, September 1999.
http://www.npl.co.uk/ssfm/download/#cise27_99

4. Cox, M.G., M.P. Dainton, and P.M. Harris. Testing functions for the calculation
of standard deviation. NPL Report CMSC 07/00, October 2000.

5. Cox, M.G., M.P. Dainton, and P.M. Harris. Testing functions for linear
regression. NPL Report CMSC 08/00, October 2000.

6. Cox, M.G., P.M. Harris, E.G. Johnson, P.D. Kenward, and G.I. Parkin. Testing
the numerical correctness of software. NPL Report CMSC 34/04, January 2004.

7. DACS, Rapid Application Development (RAD). Software Tech News, 1998.
2(1).

8. ICA. Spreadsheet Design., Institute of Chartered Accountant in England and
Wales, 1994.

9. McDowall, R.D., C. Burgess, and B. Hardcastle, Spreadsheets: heaven or hell.
Scientific Data Management, 1999. 3(3): p. 8-17.

10. Object Mentor. JUnit: 2006. http://www.junit.org
11. Panko, R.R. and R.P. Halverson Jr. Spreadsheets on Trial: A Survey of Research

on Spreadsheet Risks. in 29th Annual Hawaii International Conference on
System Sciences. 1996. Hawaii: IEEE.

12. Panko, R.R., What we know about spreadsheet errors. Journal of End User
Computing, 1998. 10(2): p. 15-21.

13. Wichmann, B.A., R.M. Barker, and G.I. Parkin. Validation of Software in
Measurement Systems. Software Support for Metrology Best Practice Guide No.
1, NPL, March 2004. http://www.npl.co.uk/ssfm/download/bpg.html#ssfmbpg1

